姓名: 陈哲
职称: 教授 博导
所在院系:环境科学与工程学院
研究方向:Focus Area:
二维材料在环境催化和CO2资源化中的应用;Application of two-dimensional materials in environmental catalysis and CO2 utilization.
环境修复纳米材料,包括高级催化氧化材料、光催化材料等; Nanomaterials for Environmental Remediation
能源转化和存储材料,包括锂离子电池、钠离子电池、金属电池、固态电池等;Nanomaterials and Nanodevices for Energy Conversion and Storage, including Lithium ion battery, sodium ion battery, metal battery and solid state battery.
联系方式:
办公地址:主楼G744
电子邮箱:chenz@ncepu.edu.cn
办公电话:15901289414
个人简介:
陈哲,女,1987年生,博士生导师。2008年毕业于北京师范大学,取得学士学位,后进入中国科学院化学研究所,硕博连读师从宋卫国研究员。2011年基由教育部-中科院的联合培养计划,进入北京大学化学学院严纯华院士实验室攻读博士学位,并于2013年取得博士学位。随后继续前往日本东北大学WPI-AIMR任博士后、助理研究员。在Nature Communications, Advanced Science, ACS Catalysis, Environmental science: nano等国际期刊发表论文四十余篇,授权发明专利11项。
主要从事环境修复纳米材料(包括吸附材料、高级催化氧化材料、光催化材料等)和能源转化和存储材料(包括锂离子电池、钠离子电池、金属电池、固态电池等)的研究工作,设计合成了多种性能优异的去除环境污染物的催化材料和吸附材料,并探讨了催化吸附作用机理;同时从事能源电化学与纳米材料的交叉研究,在动力电池和储能电池体系及其关键材料方面取得了系列创新性成果,研制出多种新型高性能电极材料和二次电池体系。先后负责国家自然科学基金面上项目一项、青年项目一项;国家电网公司科技项目四项;作为研究骨干参与国家重点研发计划课题1项;主讲本科生课程《物理化学》、《工业催化》、《纳米化学前沿等课程》、研究生课程《纳米化学前沿》和《环境纳米技术》等。培养的学生梁宇、耿志松获硕士国家奖学金,王维雪获博士国家奖学金。
教学与人才培养情况:
1.主要教学课程:
《物理化学》,2015年起,40学时
《工业催化》,2015年起,40学时
《纳米化学前沿》,2016年,32学时
《环境纳米技术》,2016年,32学时
2.学生培养
王维雪(博士)、梁宇、张一飞、李洪基、李婧婧等
3. 学生获得荣誉与代表就业情况
梁宇,国家奖学金(硕士),优秀毕业生,研究生标兵。工作地点:北京石墨烯研究院
王维雪,国家奖学金(博士),优秀博士生奖学金,2019。工作地点:东北电力大学 副教授
黄强,博士,优秀研究生干部,工作地点:中国原子能科学研究院
李洪基,优秀硕士毕业论文。工作地点:北京怀柔国家实验室
李婧婧,北京市优秀毕业研究生。工作地点:航天九院。
孔晓辉,宁德时代新能源科技股份有限公司
张一飞,金爽,工作地点:北京市公务员
耿志松,国家奖学金(硕士),天津大学读博
……
主要科研项目情况
[1]国家自然科学基金面上项目,《杂原子掺杂的类石墨烯碳材料对关键放射性核素的快速高效去除及机理研究》,2019.10-2023.12,65万。
[2]国家电网公司,《高比容量、高稳定性的二维扩层钠离子电池电极材料研究和器件研制》,2019.11-2022.12,200万。
[3]国家电网公司,《高安全固态电池电解质设计及固态电池性能验证》,2020.11-2023.12,300万。
[4]国家自然科学基金青年项目,《类石墨烯碳材料在层状硅酸盐受限空间内的可控制备与性能研究》,2015.10-2018.12,23.7万。
[5]中央高校基本科研业务费面上项目,《碳基高性能析氢电催化材料的新型结构构筑》,2016.4-2018.6,10万元。
[6]中央高校基本科研业务费面上项目,《限域空间内多元催化体系的构筑及环境中的应用》,2019.4-2020.12,10万元。
代表性论著
1.Wang Weixue; Yang Liu; Du Xinjie; Wang Huihui; Ai Yuejie; Liu Qianwei; Wang Xiangke; Chen Zhe ; Solvent-free fabrication of ultrathin two-dimensional metal oxides/sulfides in a fixed interlayer by geometric confinement, Nature Communications, 2025, 16, 1623
2.Wang Weixue; Liu Yang; Yue Yifan; Wang Huihui; Cheng Gong; Gao Chunyang; Chen Chunlin; AiYuejie; Chen Zhe; Wang Xiangke ; The Confined Interlayer Growth of Ultrathin TwoDimensional Fe3O4 Nanosheets with Enriched Oxygen Vacancies for Peroxymonosulfate Activation, ACS Catalysis, 2021, 11: 11256-11265
3.Bai, Wenhui; Lu, Hongze; Liu, Yang; Yuan, Xue; Ai, Yuejie; Wang, Lidong; Chen, Zhe ; Crystallinity regulation-induced organic degradation on ultra-thin 2D Co3O4/SiO2 nanosheets: the critical trigger of oxygen vacancies, Environmental Science: Nano, 2024, 11: 2507- 2520
4.Geng, Z. S.; Sun, Y. Q.; Zhang, Q.; Shen, S. P.; Zhang, L.; Zheng, J. C.; Luo, Y.; Shi, Y. Z.; Chen, Z., An Elastomeric Lithium-Conducting Interlayer for High Performance LATP-Based Lithium Metal Batteries. Small, 2024, 20, 2402041
5.Jin shuang; Zhuang yifei; Du xinjie; Huang qiang; Chen Zhe ; Promoted photo-Fenton reactivity through electron transfer between non-contacted Au nanoparticles and Fe2O3 nanowires in a confined space, Environmental Science: Nano, 2023, 10: 1482-1493
6.Huang Qiang; Yang Liu; Bai Wenhui; Hong Jiahui; Ai Yuejie; Chen Zhe ; Few-layer graphitic carbon nitride for enhanced visible-light photocatalytic efficiency: the role of narrow bandgap and nitrogen-vacancies, Environmental Science: Nano, 2022, 9: 4445-4458
7.Shao-Peng Shen, Geng Tang, Hong-Ji Li, Liang Zhang, Jin-Chi Zheng, Yuan Luo, Jun-Pei Yue, Yongzheng Shi, Zhe Chen*, Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity, Ceramics International, 2022, 48, 36961-36967.
8.Li, H. J.; Shen, S. P.; Tang, G.; Li, J. J.; Lyu, X. F.; Zhu, L. J.; Jiang, F.; Chen, Y. Q.; Yue, J. P.; Chen, Z., Nanocasting construction of few-graphene-layers carbon with tunable layer spacing as ultra-stable anode for sodium-ion batteries. Electrochimica Acta 2022, 419,140423.
9.Huang, Q.; Jin, S.; Song, S.; Chen, Z., The nitrogen-doped graphene-like carbon nanosheets: Confined construction and oxygen-limited oxidation for higher removal efficiency toward organic contaminants. Journal of Cleaner Production 2022, 363,132604
10.Chen, Z.; Huang, Q.; Zhang, Y. F.; Sheng, P.; Cui, Z. M., Confined Generation of Homogeneously Dispersed Au and SnO2 Nanoparticles in Layered Silicate as Synergistic Catalysts. Langmuir 2021, 37, (7), 2341-2348.
11.Chen, L. Z.; Gong, Q. B.; Chen, Z., Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials. Progress in Chemistry 2021, 33, (8), 1280-1292.
12.Li, H. J.; Li, J. J.; Chen, Z.; Wang, Z. Z.; Qu, J.; Chen, Y. Q.; Zhu, L. J.; Jiang, F., Blocky Sb/C Anodes with Enhanced Diffusion Kinetics for High-Rate and Ultra-Long Cyclability Sodium Dual-Ion Batteries. Chemelectrochem 2021, 8, (18), 3512-3518.
13.Wang, W. X.; Wang, X. X.; Xing, J. L.; Gong, Q. B.; Wang, H. H.; Wang, J. J.; Chen, Z.; Ai, Y. J.; Wang, X. K., Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: a promising bisphenol-A remediation material. Environmental Science-Nano 2019, 6, (3), 809-819.
14. Wang, W. X.; Gong, Q. B.; Chen, Z.; Wang, W. D.; Huang, Q.; Song, S.; Chen, J. R.; Wang, X. K., Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chemical Engineering Journal, 2019, 378,122085.
15.Huang, Q.; Song, S.; Chen, Z.; Hu, B. W.; Chen, J. R.; Wang, X. K., Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 2019, 1,, 45-73.
16.Chen, Z.; Chen, W.; Jia, D.; Liu, Y.; Zhang, A.; Wen, T.; Liu, J.; Ai, Y.; Song, W.; Wang, X., N, P, and S codoped graphene-like carbon nanosheets for ultrafast uranium (VI) capture with high capacity. Advanced Science. 2018, 1800235